Transfer of 1,4-Dihydropyridine Sensitivity from L-Type to Class A (BI) Calcium Channels
نویسندگان
چکیده
L-type Ca2+ channels are characterized by their unique sensitivity to organic Ca2+ channel modulators like the 1,4-dihydropyridines (DHPs). To identify molecular motifs mediating DHP sensitivity, we transferred this sensitivity from L-type Ca2+ channels to the DHP-insensitive class A brain Ca2+ channel, BI-2. Expression of chimeras revealed minimum sequence stretches conferring DHP sensitivity including segments IIIS5, IIIS6, and the connecting linker, as well as the IVS5-IVS6 linker plus segment IVS6. DHP agonist and antagonist effects are determined by different regions within the repeat IV motif. Sequence regions responsible for DHP sensitivity comprise only 9.4% of the overall primary structure of a DHP-sensitive alpha 1A/alpha 1S construct. This chimera fully exhibits the DHP sensitivity of channels formed by L-type alpha 1 subunits. In addition, it displays the electrophysiological properties of alpha 1A, as well as its sensitivity toward the peptide toxins omega-agatoxin IVA and omega-conotoxin MVIIC.
منابع مشابه
Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity.
The transmembrane segment IIIS5 of the L-type calcium channel alpha1 subunit participates in the formation of the 1,4-dihydropyridine (DHP) interaction domain (Grabner, M., Wang, Z., Hering, S., Striessnig, J., and Glossmann, H. (1996) Neuron 16, 207-218). We applied mutational analysis to identify amino acid residues within this segment that contribute to DHP sensitivity. DHP agonist and antag...
متن کاملResolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles.
Voltage-dependent calcium channels play a role in many cellular phenomena. Very little is known about Ca2+ channels in Drosophila, especially those in muscles. Existing literature on neuronal Ca2+ channels of Drosophila suggests that their pharmacology may be distinct from that of vertebrate Ca2+ channels. This raises questions on the pharmacology and diversity of Ca2+ channels in Drosophila mu...
متن کاملThe biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel.
Calcium channels are known to exist in muscle, neuronal and secretory cells. The 1,4-dihydropyridines are potent blockers of L-type Ca channels, and have been used as specific probes in the study of dihydropyridine-sensitive Ca channels. The receptor for the 1,4-dihydropyridines has been purified from skeletal muscle in order to characterize the biochemistry and molecular biology of the dihydro...
متن کاملProperties and modulation of cardiac calcium channels.
Voltage-dependent calcium channels are widely distributed in excitable membranes and are involved in the regulation of many cellular functions. These channels can be modulated by neurotransmitters and drugs. There is one particular type of calcium channel in cardiac cells (L-type) whose gating is affected in different ways by beta-adrenoceptor and 1,4-dihydropyridine agonists. We have analysed ...
متن کاملSynthesis and Effects of Novel Dihydropyridines as Dual Calcium Channel Blocker and Angiotensin Antagonist on Isolated Rat Aorta
Objective(s) Four novel losartan analogues 5a-d were synthesized by connecting a dihydropyridine nucleus to imidazole ring. The effects of 5a and 5b on angiotensin receptors (AT') and L-type calcium channels were investigated on isolated rat aorta. Materials and Methods Aortic rings were pre-contracted with 1 pM Angiotensin II or 80 mM KCl and relaxant effects of losartan, nifedipine, 5a and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 16 شماره
صفحات -
تاریخ انتشار 1996